Section 1.1: Variables in Algebra

Variable: a letter that is used to represent one or more numbers
(*The most popular one is “x”*)

Variable Values: the number you substitute in for a variable
Ex: Let $x = 4$...then $3x = 3(4) = ___$

Variable Expression: a collection of numbers, variables, and operations
Ex: $4y$, $8s + 1$, $3x - 4$, $7xy$, etc.

Expressions DO NOT have ____________ signs

Evaluating the Expression: replacing each variable in the expression with a number

Ex: If $x = 3$......
$6x =$
Ex: if $y = 9$.....
$3y - 4 =$

Write the Variable Expression → Substitute Values for Variables → Simplify the Numerical Expression

Ex 1: Let $x = 4$ and $y = -3$ Evaluate $2x + 4y$
Ex 2: Let $p = -6$ and $r = 2$ Evaluate $-3pr$

Ex 3: Let $y = 7$ and $z = -1$ Evaluate $5y - z$

Simple Interest Formula: $I = PRT$

I = Interest Earned
$P =$ ________________ Amount (amount of $ you invest at the start)
$R =$ The Interest Rate Earned (*Rate is ALWAYS plugged in as a ________________)
$T =$ Time Period (in ________________)

If you know the principle amount, interest rate, and time period, you can calculate the interest earned!

Ex 1: $P =$ 1000, $r =$ 4%, $t =$ 3 years
$I =$

Ex 2: $P =$ 2500, $r =$ 6%, $t =$ 5 years
$I =$

Unit Analysis: Can help determine if your model is correct by showing how the units cancel

You always need to know the ______________________ ______________________ to do unit analysis!

Ex: 12 in = 1 ft 16 oz = 1 lb
Ex 1: Change 125 lbs to Kg (2.2 lbs = 1 kg)

Ex 2: 100cm to inches (2.54cm = 1 inch)

Ex 3: 7632 ft into miles (5280 ft = 1 mile)

Average Speed = distance/time
Find the average speed for the following:
Ex 1: A 4-wheeler travels 58 miles in 2 hours
Ex 2: In 10 seconds a runner goes 85 feet

Section 1.2: Exponents and Powers

Power: an expression where a number is raised to an exponent
Power = ____________

Base: the number being multiplied times ____________

Exponent: how many times you multiply the base times itself

Which key do you use on your calculator to quickly evaluate powers???

Examples:
“Four to the third power”
“Six to the fourth power”
“Two to the sixth power”
“Ten to the second power”
“Five to the third power”

Also said “Ten squared”
Also said “Five cubed”

What is any base raised to the “zero power”?
ALWAYS = _______ Try it!

3^0 = 7^0 = (-2)^0 = -2^0 =

Examples: Evaluate when x = 3

x^3 = x^5 = x^{10} =

Grouping Symbols: (brackets or parentheses) indicate the order in which operations should be performed

Remember PEMDAS.....In the Order of Operations, Parentheses come first!
1) P → ________________ (grouping symbols) first....always follow PEMDAS within () too!
2) E → ________________ (from left to right)
3) MD → Multiplication and ________________ (from left to right)
4) AS → Addition and ________________ (from left to right)

Examples: Evaluate when x = 3 and y = 4

(x + y)^2 = (x^2) + (y^2) = 3xy^2 = (3xy)^2 =
Section 1.3: Order of Operations

Order of Operations - the order to evaluate expressions with more than one operation

PEMDAS - (Parentheses, Exponents, Multiplication, Division, Addition, Subtraction)
Then LEFT → RIGHT

1) Parentheses (grouping symbols) first
2) Exponents (powers)
3) Multiplication/Division from left to right
4) Addition/Subtraction from left to right

Ex 1: \(2 \cdot 3^2 \div 3\)

Ex 2: \(4 - (3 - 5)^2 \div 2\)

Ex 3: \([4 + (6 - 3)^2 - 9 \div 3]\)

Examples with Substitution: Let \(x = 3\)

Ex 4: \(2x - 6 \div 2\)

Ex 5: \((2x)^2 - 20 \div (2 + x)\)

Examples With Fraction Bars:
- Simplify the top and bottom using PEMDAS, and divide top by bottom or simplify fraction as the last step

Ex 6: \(\frac{3 + (4 - 2)^3 \div 8}{[20 - (2 - 4)^2 \cdot 4]}\)

Ex 7: Let \(x = 2\) \(\frac{3x - 6 + x + 7}{8 - x + (3 + x) \div 5}\)
Section 1.4: Equations and Inequalities

Equation: Two expressions with an ________________ sign (=) between them.

Solution of an Equation: If a given value for a variable makes an equation ________________, it is a solution!

Solving an equation means Finding ALL Solutions!

To check a solution, plug the value in for the variable and simplify both sides of the equation. If the two sides are equal, the value IS a solution!

Ex 1: Is 3 a solution to the equation $3x - 2 = 7$?

Ex 2: Is -1 a solution to the equation $4x - 5 = x + 3$?

Using Mental Math Questions:

Ex 3: $x + 4 = 7$ “What number added to 4 is 7?”

Ex 4: $3x = 12$ “Three times what number is 12?”

Ex 5: $x^2 = 25$ “What number squared is 25?”

Inequality Symbols: like an equation, an inequality symbol can be placed between two mathematical expressions.

*Substitute in values for the variable, simplify, and determine whether or not the given variable makes the inequality true!

< is “____________ than”
\leq is “____________ than or _____________ to”

> is “_______________ than”
\geq is “_______________ than or _____________ to”

Ex 6: Is -2 a solution to the inequality $3x - 4 > 5$?

Ex 7: Is 4 a solution to the inequality $2x - 3 \leq 9$?
Changing Phrases Into Algebraic Expressions:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Verbal Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td></td>
</tr>
</tbody>
</table>

*The “unknown number” is your variable, usually called x

*“is” means equals…..that is where you put the = in an equation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Verbal Phrase</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>The sum of 6 and a number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eight more than a number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A number plus 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A number increased by 7</td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td>The difference of 5 and a number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Four less than a number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seven minus a number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A number decreased by nine</td>
<td></td>
</tr>
</tbody>
</table>
Multiplication

<table>
<thead>
<tr>
<th>Verbal Phrase</th>
<th>Algebraic Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The product of 9 and a number</td>
<td></td>
</tr>
<tr>
<td>Ten times a number</td>
<td></td>
</tr>
<tr>
<td>A number multiplied by 3</td>
<td></td>
</tr>
</tbody>
</table>

Division

<table>
<thead>
<tr>
<th>Verbal Phrase</th>
<th>Algebraic Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The quotient of a number and 4</td>
<td></td>
</tr>
<tr>
<td>Seven divided by a number</td>
<td></td>
</tr>
</tbody>
</table>

Translating Word Statements Into Algebraic Equations

<table>
<thead>
<tr>
<th>Verbal Phrase</th>
<th>Algebraic Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven more than the product of eight and a number is thirty-one.</td>
<td></td>
</tr>
<tr>
<td>Six less than four times a number is ten.</td>
<td></td>
</tr>
<tr>
<td>Five more than the quotient of twenty and a number is seven.</td>
<td></td>
</tr>
<tr>
<td>Eight multiplied by a number then decreased by three is twenty-nine.</td>
<td></td>
</tr>
<tr>
<td>Nine times the difference between a number and four is fifty-four</td>
<td></td>
</tr>
<tr>
<td>The sum of a number and six, multiplied by two is twenty-eight</td>
<td></td>
</tr>
</tbody>
</table>
What is data?

Data: information, facts, or numbers that ______________________ something

What are some graphical representations we use to display or analyze data?

Bar Graph: _______________ or _________________ bars used to represent different pieces of data

Line Graph: Data is represented by __________, which may or may not be connected into a __________

How do you know when to connect the points in a line graph and when NOT to?

1) A Graph shows number of cd’s purchased vs. cost (Not connected)
2) A Graph shows Time vs. number of miles biked (Connected)

Have students come up with their own examples of graphs that should have connected points or not
Section 1.7: An Introduction to Functions

Function: a rule that establishes a relationship between _____ quantities

Input: The number you “put in” (the x-values)

Output: The number you “get out” (the y-values)

In order to be a function, for every input there must be exactly ________ output!

Are the following tables functions?

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Domain: The collection of all the ________ values

Range: The collection of all the ______________ values

Tables Should Have:
- Title
- Row Labels (horizontal)
- Column Labels (vertical)
- Key (if needed)

Graphs Should Have:
- Title
- X-axis Label (horizontal)
- Y-axis Label (vertical)
- Key (if needed)
- Scale with __________ __________________

Example: Make a table for and graph the following function:

\[y = 250 + 20x \]

Domain: \(\{0 \leq x \leq 5\} \)

<table>
<thead>
<tr>
<th>Input (x values)</th>
<th>Output (y values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>