Section 4.4: Prove Triangles Congruent by SAS and HL EQ: How can you use 2 sides and an < to prove \triangle s are \cong ?

Consider a relationship involving two sides and the angle they form, their *included* angle. To picture the relationship, form an angle using two pencils.

- 1) Draw triangle with sides 2 inches, 8.5 cm, and the included angle of 65 degrees.
- 2) Cut out triangle ABC...compare with others.

Does a Side-Angle-Side Congruence pattern guarantee two congruent triangles?

- A4. State the third congruence that must be given to prove $\Delta JRM \cong \Delta DFB$.
- a. $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, $\angle \mathcal{J} \cong \angle \mathcal{D}$ (by SAS)
 - *Green
- b. $\overline{MR} \cong \overline{BF}$, $\angle J$ is a right angle, $\angle J \cong \angle D, \leftarrow \ldots \cap A$ $\overline{DM} \cong \overline{DB}$ or $\overline{DM} \cong \overline{DM}$

A5. Decide if there is enough information to prove that the two triangles are congruent. If there is, give a congruence statement for the triangles and the reason(s) for the congruence.

HL

A6. Given: $\overline{CB} \parallel \overline{FE}, \overline{AC} \cong \overline{DF}, BC = 2$ and EF = 10Prove: $\triangle ABC \cong \triangle DEF$ Statement

Reason $CB \mid | FE \qquad Given$ $AC \cong \overline{DF} \qquad Given$ $BC = ID, EF = ID \qquad Given$ $BC = EF \qquad Subst.$ $BC \cong EF \qquad Def. of \cong$ $ABCA \cong \triangle EAD \qquad CA \cong fim.$ $ABCA \cong \triangle EAD \qquad SAS \triangle \cong$

4.4 Summary:

If 2 sides and the included \angle of one \triangle are \cong to another \triangle then the \triangle is are \cong . $C \triangle ABC \cong \triangle GHF$